A Note on Almost Periodic Solutions of Semilinear Equations in Banach Spaces

نویسنده

  • LAN NGUYEN
چکیده

In this article, we generalize the main result obtained by Bahaj in [1]. Also our proof is shorter than the original proof.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces

Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...

متن کامل

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

Bounded and Periodic Solutions of Semilinear Impulsive Periodic System on Banach Spaces

A class of semilinear impulsive periodic system on Banach spaces is considered. First, we introduce the T0-periodic PC-mild solution of semilinear impulsive periodic system. By virtue of Gronwall lemma with impulse, the estimate on the PC-mild solutions is derived. The continuity and compactness of the new constructed Poincaré operator determined by impulsive evolution operator corresponding to...

متن کامل

Existence of Weighted Pseudo Almost Periodic Mild Solutions for Nonlocal Semilinear Evolution Equations

In this paper, we are concerned with new weighted pseudo almost periodic solutions of the semilinear evolution equations with nonlocal conditions x′(t) = A(t)x(t) + f(t, x(t)), x(0) = x0 + g(x), t ∈ R. By applying the Banach fixed point theorem, the theory of the measure theory, the theory of semigroups of operators to evolution families and the properties of a class of new weighted pseudo almo...

متن کامل

Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006